Structure of Diethyl 4-Ethoxycarbonyl-3,4-dihydrobenzo[/]quinoline-3-phosphonate

BY YUKIO YOKOTA* AND TOMITAKE TSUKIHARA[†]

Faculty of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680, Japan

KEN-ICHI SAKAGUCHI

Research Center for Protein Engineering, Institute for Protein Research, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565, Japan

AND YOSHIKI HAMADA AND ISAO TAKEUCHI

Faculty of Pharmacy, Meijo University, 15 Yagoto-Urayama, Tenpaku-cho, Tenpaku-ku, Nagoya 468, Japan

(Received 13 July 1989; accepted 14 August 1989)

Abstract. $C_{20}H_{24}NO_5P$, $M_r = 389.40$, monoclinic, a = 15.332 (3), $P2_1/a$. b = 10.603 (6), c =12.442 (6) Å, $\beta = 100.89$ (3)°, V = 1986 (1) Å³, Z =4, $D_x = 1.30 \text{ g cm}^{-3}$, Mo K α , $\lambda = 0.7107 \text{ Å}$, $\mu =$ 1.84 cm^{-1} , F(000) = 824, room temperature, R =0.059 for 2108 observed reflections $[F_o > 3\sigma(F_o)]$. Out of 11 C-C bonds of the biphenyl ring, four bonds (1.35-1.38 Å) are significantly shorter than the others

* Present address: Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 680, Japan.

† Author to whom correspondence should be addressed.

Table 1.	Atomic coor	dinates ar	nd equival	ent isotropic
thermal	parameters ($(Å^2)$ with a	e.s.d.'s in	parentheses

Beq	=	$\frac{4}{3}[B_{11}]$	$q^{2} +$	$B_{22}b^2$	+	$B_{33}c^{2}$	+	$abB_{12}(\cos\gamma) +$	$acB_{13}(\cos\beta)$	
					+	bcB_2	3(C	$\cos\alpha$)].		

(1.40-1.43 Å). Two P—O single bonds are 1.564 (4)and 1.560 (4) Å in length, and the P-O double-bond length is 1.454(4) Å.

Experimental. Title compound prepared according to the literature (Takeuchi, Shibata & Hamada, 1984). Colorless crystals obtained from ethanol solution. Crystal of dimensions $0.3 \times 0.2 \times 0.2$ mm, Rigaku AFC-1 rotating-anode four-circle diffractometer, graphite-monochromatized Mo $K\alpha$ radiation. Cell dimensions determined from 16 2θ angles in the range $17 < 2\theta < 23^{\circ}$. Intensities collected to $\sin\theta/\lambda =$

Table	2	Bond	lengths	(Å)	and	bond	angles	(°)	with
			e.s.d.'s	in p	arent	heses			

D_{c}	$p_{q} = 3[D_{11}a + D_{22}b]$	$- D_{33}C - UUD_{12}$	$2(\cos \gamma) + ac D_{13}($	cosp)	P01	1.566 (4)	P02	1.454 (4)	P03	1.559 (4)
		P-C1	1.822 (5)	NCl	1.460 (6)	NC13	1.436 (6)			
			_	מ	01-C14	1.427 (8)	O3C16	1.460 (7)	O4-C18	1.203 (6)
_	x	У	Z	Beq	O5-C18	1.324 (6)	O5C19	1.466 (8)	C2-C3	1.332(7)
P	0.5962 (1)	0.8906 (1)	0.1953 (1)	4.6 (0)	C3C4	1.464(7)	C4-C5	1.433 (6)	C4-C13	1.379 (6)
N	0.7481 (3)	0.7466 (3)	0.2224 (3)	4.3 (1)	C5-C6	1.409 (6)	C5-C10	1.412 (6)	C6-C7	1.362 (7)
01	0.6079 (2)	0.8781 (3)	0.3226 (2)	5.2 (1)	C7-C8	1.396 (8)	C8-C9	1.346(8)	C9C10	1.429 (7)
02	0.5597 (3)	1.0084 (3)	0.1463 (3)	6.8 (1)		1.416(7)	C11C12	1.359(7)	C12C13	1.406 (6)
O3	0.5422 (2)	0.7693 (3)	0.1552 (2)	5.8 (1)	C14-C15	1.468(10)	C16C17	1.428(13)	C19 - C20	1.431 (10)
O4	0.7216 (3)	0.6507 (4)	0.0566 (2)	6·8 (1)	011 015	1 100 (10)	0.0 0	20 (
05	0.8056 (2)	0.5560 (3)	0.2010 (2)	5.4 (1)	01P02	2	117-2 (2)	01—P—03	3	101.9 (2)
Cl	0.7090 (3)	0.8638 (4)	0.1737 (3)	4·7 (1)	Ol—P—Cl		101.9 (2)	O2—P—O3	3	115.8 (2)
C2	0.7684 (3)	0.9730 (5)	0.2099 (4)	5.0 (1)	02—P—C1		111.9 (2)	O3-PC1		106-6 (2)
C3	0.8237 (3)	0.9699 (4)	0.3063 (4)	4.8 (1)	C1NC13		116·9 (4)	C1NC18		117.0 (4)
C4	0.8246 (3)	0.8616 (4)	0.3794 (3)	3.8 (1)	C13NC18		125.4 (4)	P-01-C14		124.0 (4)
C5	0.8607 (3)	0.8687 (4)	0.4942 (3)	3.8 (1)	P-O3-C16		121.2 (4)	C18-05-C19		115-5 (4)
C6	0.9025 (3)	0.9773 (5)	0.5451 (4)	5.0 (1)	P-C1-N		113.5 (3)	P		112.2 (4)
C7	0.9369 (4)	0.9797 (5)	0.6543 (4)	6.1 (2)	N-C1-C2		110.9 (4)	C1-C2-C	23	120-1 (5)
C8	0.9317 (4)	0.8741 (6)	0.7198 (4)	6.4 (2)	C2—C3—C4		120.6 (5)	C3-C4-C	25	122.3 (4)
C9	0.8915 (4)	0.7688 (5)	0.6748 (4)	5.5 (1)	C3-C4-C	213	118.8 (4)	C5C4C	213	118.9 (4)
C10	0.8540 (3)	0.7626 (4)	0.5607 (3)	4·1 (1)	C4—C5—C	26	123.2 (4)	C4-C5-C	210	119.0 (4)
C11	0.8130 (3)	0.6513 (4)	0.5125 (3)	4.3 (1)	C6C5C	210	117.7 (4)	C5-C6C	27	121.4 (5)
C12	0.7797 (3)	0.6448 (4)	0.4034 (3)	4·0 (1)	C6-C7-C	8	120.9 (5)	C7—C8—C	C9	119.6 (6)
C13	0.7872 (3)	0.7498 (4)	0.3367 (3)	3.5 (1)	C8C9C	C10	121-2 (5)	C5-C10-	-C9	119-1 (4)
C14	0.5358 (4)	0.8644 (7)	0.3794 (5)	7.5 (2)	C5-C10-	C11	119.4 (4)	C9-C10-	-C11	121-5 (4)
C15	0.5730 (4)	0.8440 (5)	0.4958 (5)	7.1 (2)	C10-C11-	C12	121.2 (4)	C11C12-	C13	119.5 (4)
C16	0.4985 (4)	0.7545 (6)	0.0410 (4)	7.4 (2)	N-C13-C	24	117.8 (4)	N-C13-C	212	120.1 (4)
C17	0.4262 (5)	0.6682 (11)	0.0347 (6)	14.4 (4)	C4-C13	C12	121.9 (4)	01-C14-	-C15	108.1 (5)
C18	0.7558 (3)	0.6491 (5)	0.1520 (4)	5.0 (1)	O3-C16-	C17	109.3 (7)	N-C18-C	D4	122.9 (5)
C19	0.8167 (4)	0.4481 (5)	0.1311 (5)	7.0 (2)	N-C18-C	05	112.3 (4)	O4-C18-	-05	124.8 (5)
C20	0.8487 (5)	0.3426 (6)	0.1990 (5)	8.6 (2)	O5-C19	-C20	109.0 (6)			.,

0108-2701/90/010167-02\$03.00 © 1990 International Union of Crystallography

0.59470 Å⁻¹ in h 0/18, k 0/12 and l = 14/14, $\theta = 2\theta$ scans, θ -scan width $(1.40 + 0.35 \tan \theta)^{\circ}$, three standard reflections monitored every 100 reflections showed no significant variation in intensity. 2572 unique reflections measured, 2108 intensities observed $[F_o > 3\sigma(F_o)]$, no absorption correction. Structure solved by MULTAN (Germain, Main & Woolfson, 1971). H atoms located on a difference map. Positional parameters of all atoms and anisotropic thermal parameters for P, O, N and C atoms and isotropic thermal parameters for H atoms refined by block-diagonal least squares (Ashida, 1973). $\sum w |\Delta F|^2$ minimized with w = 1.0 for $0 < F_o <$ 56 and $w = [1.0 + 0.167(F_o - 56)]^{-1}$ for $F_o > 56$. Final R = 0.059, wR = 0.067 and S = 1.229. Maximum positive and maximum negative electron densities in final difference Fourier synthesis are 0.53 and $-0.47 \text{ e} \text{ Å}^{-3}$. Δ/σ in the final cycle = 0.3 (z coordinate of an H atom). Atomic scattering factors from International Tables for X-ray Crystallography (1974). All computations performed on a HITAC 280D at the Tottori University Computing Center and on a FACOM M780/30 at the Data Processing Center of Kyoto University. The final atomic coordinates and equivalent isotropic temperature factors are given in Table 1. Bond distances and angles are listed in Table 2.* A stereoview of the molecule with

Fig. 1. Stereoview of the title molecule with the atomic numbering system. The absolute configuration of the molecule is arbitrary.

atomic numbering drawn by *DCM*-3 (Takenaka, 1977) is shown in Fig. 1.

Related literature. The detailed synthetic method and spectral data of the title compound and related compounds are presented by Takeuchi *et al.* (1984).

References

- ASHIDA, T. (1973). HBLS-V. The Universal Crystallographic Computing System – Osaka, pp. 55–61. The Computing Center, Osaka Univ., Japan.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- TAKENAKA, A. (1977). DCM-3. Program for drawing crystal and molecular structures. Tokyo Institute of Technology, Japan.
- TAKEUCHI, I., SHIBATA, Y. & HAMADA, Y. (1984). Yakugaku Zasshi, 104, 1133–1139.

Acta Cryst. (1990). C46, 168-170

Structure of (\pm) -2-Hydroxymethyl-2,6-dimethylcyclohexan-1-ol

By Mitsuo Morooka, Shigeru Ohba, Takeshi Sugai, Hideaki Kakeya, Hiromichi Ohta and Yoshihiko Saito

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

(Received 6 July 1989; accepted 22 August 1989)

Abstract. C₉H₁₈O₂, $M_r = 158 \cdot 2$, monoclinic, C2/c, $a = 21 \cdot 592$ (4), $b = 6 \cdot 096$ (1), $c = 15 \cdot 166$ (3) Å, $\beta = 115 \cdot 00$ (1)°, $V = 1809 \cdot 2$ (6) Å³, Z = 8, $D_m = 1 \cdot 15$ (1), $D_x = 1 \cdot 16$ Mg m⁻³, λ (Mo $K\alpha$) = 0.71073 Å, $\mu = 0.074$ mm⁻¹, F(000) = 704, T = 298 (2) K, R = 0.044 for 1274 unique observed reflections. The relative configuration of (±)-2-ethoxycarbonyl-2,6-dimethyl-

cyclohexan-1-one having a 2-methyl substituent chemical shift of $\delta 1.28$ was determined to be $(2R^*, 6R^*)$ by the structure determination of its derivative. The title molecules are linked into infinite chains along **c** by intermolecular hydrogen bonds between the hydroxy groups with O…O distances 2.773 (3) and 2.985 (5) Å.

0108-2701/90/010168-03\$03.00

© 1990 International Union of Crystallography

^{*} Lists of structure factors, anisotropic temperature factors of the non-H atoms, and isotropic temperature factors and positional parameters of H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52206 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.